A Unified Conditional Frequentist and Bayesian Test for Fixed and Sequential Simple Hypothesis Testing
نویسندگان
چکیده
منابع مشابه
Unified Bayesian and Conditional Frequentist Testing for Discrete Distributions
Testing of hypotheses for discrete distributions is considered in this paper. The goal is to develop conditional frequentist tests that allow the reporting of datadependent error probabilities such that the error probabilities have a strict frequentist interpretation and also reflect the actual amount of evidence in the observed data. The resulting randomized tests are also seen to be Bayesian ...
متن کاملUnified Conditional Frequentist and Bayesian Testing of Composite Hypotheses
Testing of a composite null hypothesis versus a composite alternative is considered when both have a related invariance structure. The goal is to develop conditional frequentist tests that allow the reporting of data-dependent error probabilities, error probabilities that have a strict frequentist interpretation and that reflect the actual amount of evidence in the data. The resulting tests are...
متن کاملMultisource Bayesian sequential hypothesis testing
On some probability space (Ω,F,P), let (X)t≥0, 1 ≤ i ≤ d be d independent Brownian motions with constant drifts μ(i), 1 ≤ i ≤ d, and (T (j) n , Z n )n≥1, 1 ≤ j ≤ m be m independent compound Poisson processes independent of the Brownian motions (X)t≥0, 1 ≤ i ≤ d. For every 1 ≤ j ≤ m, (T (j) n )n≥1 are the arrival times, and (Z n )n≥1 are the marks on some measurable space (E, E), with arrival ra...
متن کاملBayesian and Frequentist Multiple Testing
We introduce a Bayesian approach to multiple testing. The method is an extension of the false discovery rate (FDR) method due to Benjamini and Hochberg (1995). We also examine the empirical Bayes approach to simultaneous inference proposed by Efron, Tibshirani, Storey and Tusher (2001). We show that, in contrast to the single hypothesis case – where Bayes and frequentist tests do not agree even...
متن کاملBayesian Frequentist Multiple Testing
We introduce a Bayesian approach to multiple testing. The method is an extension of the false discovery rate (FDR) method due to Benjamini and Hochberg (1995). We also examine the empirical Bayes approach to simultaneous inference proposed by Efron, Tibshirani, Storey and Tusher (2001). We show that, in contrast to the single hypothesis case – where Bayes and frequentist tests do not agree even...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1994
ISSN: 0090-5364
DOI: 10.1214/aos/1176325757